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Diluted networks of nonlinear resistors and fractal dimensions of percolation clusters
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We study random networks of nonlinear resistors, which obey a generalized Ohm&~talv Our renor-
malized field theory, which thrives on an interpretation of the involved Feynman diagrams as being resistor
networks themselves, is presented in detail. By considering distinct values of the nonlineastycalculate
several fractal dimensions characterizing percolation clusters. For the dimension associated with the red bonds
we show thatd,.¢=1/v at least to orde©(e*), with v being the correlation length exponent, and6—d,
whered denotes the spatial dimension. This result agrees with a rigorous one by Coniglio. Our result for the
chemical distanced ,,=2—€/6—[937/588+ 45/49(In 2-9/10 In 3)|(e/6)2+ O( %) verifies a previous calcula-
tion by one of us. For the backbone dimension we filh=2+ e/21—172¢2/9261+ 2[ — 74639
+2268Q(3)]€%/4084101 O(€?), where?(3)=1.202057--, in agreement to second order éwith a two-
loop calculation by Harris and Lubensky.

PACS numbgs): 64.60.Ak, 64.60.Fr, 72.80.Ng, 05.70.Jk

I. INTRODUCTION 1. MODEL

Percolation is a leading paradigm for disordear a re- Consider ad-dimensional lattice, where bonds between
. . . nearest-neighboring sites are randomly occupied with prob-

view see, e.g., Ref§1-3)). Though it represents the sim- a1 or empty with probability 1 p. Each occupied
plest model of a disordered system, it has many applicationg,,nq has a finite nonzero conductamchereas unoccupied
e.g., polymerization, porous and amorphous materials, thiongs have conductance zero. We suppose that the system is
films, spreading of epidemics, etc. In particular the transporhear the percolation threshold, i.g.js close to the critical
properties of percolation clusters have gained a vast amougbncentratiornp, above which an infinite cluster exists. We

of interest over the last decades. Random resistor networkge interested in the resistanRe(x,x’) between two lattice

(RRNs play a major role in the study of transport on perco-sitesx andx’ averaged subject to the condition, tixatndx’
lation clusters for several reasons. For example, one cafre on the same cluster,

learn about the conductivity of disordered media, which
might be important for technical applications. One can study M= (X (XX )R(6,X)) e I {x(x,x"))c - 2.1
diffusion on disordered substrates, since the diffusion con-

stantD and the conductivity, of the system are related by (*++)c denotes the average over all configurations of the di-
the Einstein relation luted lattice andy(x,x’) is an indicator function that takes

the value one ifx andx’ are on the same cluster and zero

otherwise. Note thatx(x,x"))c is nothing more than the
2 usual correlation function in percolation theory. At criticality
S=——2D (1.1) M, obeys[9,10]

M, ~|x—x"|#'", (2.2

wheree andn denote the charge and the density of the mo-where v is the correlation length exponent defined by
bile particles. Nonlinear RRNs, for which the voltage dop ~(P—pc) "

over an individual resistor depends on some poxvef the

currentl flowing through it, can be exploited to derive the A. Kirchhoff's laws

fractal dimension of various substructures of percolation . .
clusters P Here, we consider a nonlinear RRN as proposed by Ken-

In this paper we present in detail our study of nonlinearkel and Straley11]. The bonds between nearest-neighboring

RRNs by renormalized field theory. A brief account of this sitesi andj obey a generalized Ohm'’s Law,

work has been given previously in R¢4]. It is based on an Vi—Vi=p;i i il |t (2.3
approach by Stephep5], its refinements by Harris and . AT
Lubensky[6], and its generalization to nonlinear resistors byor, equivalently,

Harris [7]. Our work thrives on the interpretation of the in-

volved Feynman diagrams as being resistor networks them- ai,j(vj—vi)|vj—vi|5*1=|
selveq8,4]. This interpretation leads to a substantial simpli-

fication of the field theoretic calculations, as we demonstratevhereao; j (p; ;) is the nonlinear conductangeesistanceof
by calculating the fractal dimensions of the chemical lengththe bond(i,j), I; ; is the current flowing through the bond
and the backbone to two- and three-loop order, respectivelyfrom j to i andV; is the potential at sité. The exponents

ijo (24)
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r+1

=> pij. (21D
(i,j)

ands are describing the non linearity with=s~*. The con- _
ductance and the resistance are relatedoyig= p; °. Roi(x,x)= lm X pi
Suppose a curremtis put into a cluster at siteand taken r—17()
out at sitex’. Those sites connected xandx’ by mutually
avoiding paths are constituting the backbone betweand
x". The power dissipated on the backbone is by definition

with only those bonds carrying nonzero current contributing
to the sum on the right-hand side. Hence

PZI(VX_Vx’)- (25) M—l(XIX,)NMB, (212

Using Ohm’s law, it may be expressed entirely in terms ofwhereMg stands for the number of bonds belonging to the
voltages as backbone. Thus, the fractal dimension of the backbone can

be expressed as
P:Rr(XyX,)71|Vx_Vx’|S+1 .
Dg= lim ¢, /v. (2.13

=<Z> | Vi— VS I=P({V}), 2.6 oot
|

Now we turn tor—o andr—07 following the lines of
where the sum is taken over all nearest neighbor pairs on thdlumenfeld and Aharony12]. On the backbone between
cluster andV} denotes the corresponding set of voltages. Adwo sitesx andx’ one may distinguish between two different
a consequence of the variation principle substructures: blobs formed by multiconnected bonds and

singly connected bonds which are referred to as red bonds.

d 1 Both substructures are contributing to the resistance of the
V., S+1P({V})_; Vi =0, (2.7 packbone
. . . . blob r+1 red
one obtains the circuit equations ,
| ROGO=2 pug| | +Z ey 214
[ i

% Ui,j(vi_vj)|vi_vj|s_l:_% =1, (298
j

] where the sums are taken over all bonds belonging to blobs

and over all red bonds, respectively. Since sites on a blob are
wherel;=1(6; x— J; x) and the summations extend over the multi-connected by definitioh; ;<I and thus
nearest neighbors of

Alternatively to Eq.(2.6) the power can by rewritten in blob kA
terms of the currents as lim ;> Pij I_ =0. (2.195
r—oo(l,]
PZRr(X,X')|||r+1:<Z> piilliI" " *=P{1}), (2.9  Inconclusion, the dimension of the red bonds is relateg,to
b via
with {I} denoting the set of currents flowing through the in- .
{1y g g throug droi= lim b, /. (2.16

dividual bonds. Obviously the cluster may contain closed
loops as subnetworks. Suppose there are curfgfts cir-

culating independently around a complete set of independent Consider now the first site at some end of a blob. An

closed loops. Then the power is not only a functiorl biut . s .
; ntering current splits into currentd; , flowing to nearest
also of the set of loop currents. The potential drop arounoﬁeighborsi with ’

closed loops is zero. This gives rise to the variation principle

r—o

9 ||i,x| :O'i,x|vx_vi|s- (2.1
WP({I(')},I)=0. (2.10
J In the limit s—o the ratios|l;,|/|l; ;| vanish whenever
oi (| V= Vil®< 0« Vx—V;[®. Thus, current flows only
hrough the resistor with the largest ,|V,—V;|°. This ar-
ument may be iterated through the entire blob. One identi-
fies either a single self avoiding chain through whidlows,
with

Equation(2.10 may be used to eliminate the loop currents
and thus provides us with a method to determine the tot
resistance of the backbone via Eg.9).

B. Connection to cluster properties

Here we provide background on the meaningdgf for P_E [[r+1 21

some specific values of Forr— 1, one recovers the linear =2 pilll (218
: (.5

RRN. ¢, is the usual resistance exponent as studied to order

€2, e.g., in Ref[8]. being the power dissipated on the chain, or several of such
Other values of are related to the fractal dimension of chains with identical power. The expression in E218) is
substructures of percolation clusters. Consides —1". minimal for minimal 2 ;,p; ;, i.e., the current chooses the

One obtains immediately as a consequence of(£§), that  shortest path through the blob and one is led to
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dmin=lim ¢, /v (2.19  ConsequentlyG(x,x’;X) may serve as a generating function
r—o" for M, , which may be obtained by taking the derivative of
for the chemical length exponent. (+)
G, X" ;M) =(x(X,x"))c| 1+ ——=M(x,x" )+~
C. Generating function T+ (2 26

Our aim is to determinél, . Hence our task is twofold: .
we need to solve the set of Kirchhoff's equatid@s8) and to  with respect toA, evaluated ah?=0.

perform the average over all Configurations of the diluted At this point a comment on the naturei)ﬁs appropriate.
lattice. It can be accomplished by employing the replicapne sets

technique[5,6]. The network is replicated-fold: VXH\_/)X o »
=(v®,...v{®)). One introduces NMY=iNg+ £, (2.27

() = expliX - V) (2.20  With real positivex, and £@ and imposes the condition
» x> =P £@=0. The saddle point approximation in E@.24

wherex -V, =3 A (@V{®) andX#0. One considers the cor- May be justified by demanding
relation function

No>1. (2.28
G(X,X" M) = (g () ¢ X(X") )rep (22D 0On the other hand, substitution of E@.27 into the defini-
. tion of A, leads to
given by
D
D >
. 1 _ r+1_ - re(a)
G(x,X';N)= <z o [ 1 IT avi exp[——P({V}) A= 2 AT DN
a=1
r(r+1
iw . _ K ))\Bflg<a>2+...
72 FiN-(Vy=V,) | ) . (2.22 2
1
c
r(r+1 -
. 5 5 =D)\5+1—¥)\6_1§2+---. (2.29
Here PV} =20_ PV =20_ 1% 01,V 2

—V{9[s*1 andZ is the normalization
z—f]'[dv 1F>v+inv2
=)L [ Ry (vh 7 < Vil

(2.23
_ . Note that the replica limiD—0 allows for a simultaneous
Note that we have introduced an additional power term ifilment of the conditions(2.28 and(2 30. However, we
(iw/2)Z; V2 This is necessary to give the integrals in Egs. ‘will not only rely on these conditions an. We will provide
(2.22 and(2.23 a well defined meaning. Without this term g, 64| consistency checks for the validity of Harris’ saddle

Fhe integrands_ depend only on voltage differences and thﬁoint approach as we go along and reproduce known results.
integrals are divergent. Physically the new term corresponds

to grounding each lattice site by a capacitor of unit capacity.
The original situation may be restored by taking the limit of
vanishing frequencyw— 0. Since infinite voltage drops between different clusters
In contrast to the linear networle is not quadratic and may occur, it is not guaranteed thatstays finite, i.e., the
hence the integration over the voltages is not Gaussian. Thigmit lim, ., Z® is not well defined. Moreoven, =0 has to
obstacle may be surmounted by employing the saddle poirfe excluded properly. Both problems can be handled by re-
method[7]. The saddle point equation is identical to the sorting to a lattice regularization of the integrals in Egs.

variation principle stated in Eq2.7). Thus the maximum of (2.2 and (2.23. One switches to voltage variables
the integrand is determined by the solution of the circuit

equationg2.8) and, up to an unimportant multiplicative con- = A6k taking discrete values onfa-dimensional torus, i.e.,
stant which goes to one in the linit—0, k is chosen to be ®-dimensional integer with- M <k(®

<M andk(®=k(®mod(2M). In this discrete picture there
. Ar():) are (2M)P—1 independent state variables per lattice site and
G(x,x";\) R, (x,x") . (2.29
C

Thus one can justify the expansion in Eg.26 by invoking
the conditions

AyTl<D™! and A tE2<1. (2.30

D. Field theoretic Hamiltonian

one can introduce the Potts spiris]

r+1
where Dj(x)=(2M) P X expliX- ) yy(x)= 855 —(2M) P
N#0
D (2.31)
N)= —intayre, 2.2
) agl( ) (2.29 subject to the conditiox ;& ;(x) = 0.
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Now we revisit Eq.(2.22). Carrying out the average over

the diluted lattice configurations provides us with the weight

exp(—Hyep of the averagg...) ep,

1 - i
Hrep: - In< exp{ - m P({H})-f- 7

27,
_GZD In<exp( —%ai,j|0i—¢9j|s+l)>c

i N
-2 ®
I

2

(2.32

where we have introduced the abbreviatio®|s*?
=3P _,|6(9|s*1, By dropping a constant terig In(1—p),

with Ng being the number of bonds in the undiluted lattice,

one obtains
Hrep=— 2 K(6i=6) =2 h(6)
== 2 K(6-6)D;()P;(j)
() 6,6’
- 2 h(6) (), (2.33
g
where
K(6)=In 1+Lexp<——o|0|s*1“ (2.39
1-p s+1 '
and

. dwo.
h(6)= 702. (2.39

Note thatK(é) is an exponentially decreasing function in
replica space with a decay rate proportionalcto®. For
large o, the HamiltonianH ., describes a translationally in-
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int _
rep

H > i) Di()). (2.39

_KE
() o
This represents nothing more than theM® states Potts
model which is invariant against all {2)°! permutations of
the Potts spind ;. If o~ 1+0, this Sizm)p sSymmetry is lost
in favor of the short range interaction.
We proceed with the usual coarse graining step and re-

place the Potts spind 4(x) by order parameter fields(X, 5)

which inherit the constrainE ;o(x,6)=0. We model the
corresponding field theoretic Hamiltoni&it in the spirit of
Landau as a mesoscopic free energy from local monomials
of the order parameter field and its gradients in real and
replica space. The gradient expansion is justified since the
interaction is short ranged in both spaces. Purely local terms
in replica space have to respect the fs§,)o Potts symme-

try. After these remarks we write down the Landau-
Ginzburg-Wilson type Hamiltonian

fddXE{; [g

g\t 1 -
~ @] X0+ 5[Ve(x0)]

- W -
(x,6)°= 5 @(x,6)

+g¢(x, é)%%”é%(x,é)}. (2.39

Here we have neglected all terms that are irrelevant in the
renormalization group sense: and w, are now coarse
grained analogues of the original coefficients and w, ;
appearing in Eq(2.37). Terms associated withv, , are ir-
relevant forp=2 and therefore neglected. Note again that
reduces to the usual ()P states Potts model Hamiltonian
by settingw, =0 as one retrieves purely geometrical perco-
lation in the limit of vanishingw,(o— ©).

IIl. RENORMALIZATION GROUP ANALYSES

A. Resistance of Feynman diagrams

variant short range interaction of Potts spins in real and rep- The diagrammatic elements contributing to our renormal-

lica space with an external one site potenti@h). More-

over, the interaction potentim(é) is an analytic function of
>P_, 16|51, Thus the Fourier transform

o1 > .
K()\)—W ; eXQ—IR-G)K(ﬁ) (2.36)

can be Taylor expanded as
RO =wo= 2% i ol =A,(R)], (237

with wg andw, ,~ o~ P being expansion coefficients.
In the limit of perfect transportg— oo, K(é) goes to its

local limit K(§)=K5;,5, with K being a positive constant.
The interaction part of the Hamiltonian reduces to

ization group improved perturbation calculation are the three
point vertex—g and the propagator

1- 685 1

- - (3.2
p2+T_WrAr()\) p2+7'_WrAr()\)
Note that we have switched to a),qf) representation by

employing Fourier transformation in real and replica space.
Equation(3.1) shows that the principal propagator decom-

poses into a propagator carryirijs (conducting and one

not carrying \'s (insulating. This allows for a schematic
decomposition of principal diagrams into sums of diagrams
consisting of conducting and insulating propagatsee Ap-
pendix A). Here a new interpretation of the Feynman dia-
grams emerggs]. They may be viewed as resistor networks
themselves with conducting propagators corresponding to
conductors and insulating propagators corresponding to open
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bonds. The parametessppearing in a Schwinger parametri-  w W, =2"1Z,w,, g—§= 2—3/223/206— V12 ez
r

zation of the conducting propagators (3.7
1 ” - heree=6—d and is an i length scale. The fact
_ DWW A wheree and u is an inverse length scale. The factor
P2+ 7—w, A, (N) fo dsexp{—s[7+p = weA (M ]} G.=(4m) 92I'(1+ €/2), with I" denoting the gamma func-

(3.2 tion, is introduced for convenience. TlZ&efactors may be
determined by minimal subtraction, i.e., they are chosen to

correspond to resistances and the replica varidhige cur- ~ SOl€ly cancel poles ir. Z, Z., andZ, are the usual Potts

rents. The replica currents are conserved in each vertex affgede! Z factors. They have been computed to three loop
. . . S order by de Alacantara Bonfimt al. [15]. It remains to cal-
we may write for each edgeof a diagram\;=\;(\,{x}),

J culatez,, .
H r
where is an external current anfk} denotes a complete The unrenormalized theory has to be independent of the

set of independent loop currents. Thedependent part of & |ength scalew ! introduced by renormalization. In particu-
diagram can be expressed in terms of its pofer lar, the connected\ point correlation functions must be in-
dependent o, i.e.,

exp(wrZ siAr(K)) =exgw,P(X {&})]. (3.3 ;
# g ONXA (M} 7,8) =0 (39
The new interpretation suggests an alternative way of

computing the Feynman diagrams. To evaluate sums ov

r . . ' .
independent loop currents %or all N. Equation(3.9) translates via the Wilson functions

y Bu-p | w=p T 3o
< W=pu—/|, xW=p——", .
% exgw,P(\ {k})] (3.9 M&,u, . M on |,
we employ the saddle point method under the conditions alnw, 9
discussed at the end of Sec. Il C. Note that the saddle point L(UW)=pu 3 , y,__(u)=,ua—ln Z |, (3.9
equation is nothing more than the variation principle stated Ko K 0

in Eq. (2.10. Thus solving the saddle point equations is
equivalent to determining the total resistarRg{s;}) of a  Where the bare quantities are kept fix while taking the de-
diagram, and the saddle point evaluation of R4) yields rivativ'es, into the Gell-Mann-Low renormalization group
equation
quRr({si})WrAr()\)]a (35)
d J g N }

F
Bt TR — Wl —F =
[“(m Bou ™ g T Wil Gt 2

where we have omitted once more multiplicative factors
which go to one forD—0. A completion of squares in the .
momenta renders the momentum integrations straightfor- XGN{XW, A (N} 7,u, 1) =0. (3.10
ward. Equally well we can use the saddle point method

which is exact here since the momentum dependence [Fhe particular form of the Wilson functions can be extracted
purely quadratic. After an expansion for smali(\) all dia-  from the renormalization scheme and @éactors.

grammatic contributions are of the form The renormalization group equation is solved by the
method of characteristics. At the infrared stable fixed point
(P2 R2) =1 p(p2) + I (PIW, A, (N)+- -+ u*, determined byB3(u*)=0, the solution reads
:f IT ds[1+R.({sHWiA(X)+---] GNX WA (M)} 7u, )
0 i

=17 NG (X1 WA ()L 7 U ),

xD(p?{s}). (3.6
(3.1
D(p?{s}) is nothing more than the integrand one obtains . o s . . .
upon Schwinger parametrization of the corresponding diaWherey* =y(u”), «*=x(u*) and{y'=¢,(u*). _
gram in the usual® theory. To get a scaling relation for the correlation functions, a

dimensional analysis remains to be performed. It yields

B. Renormalization and scaling N
; ; . GN({XaWrAr()\)};T1UaM)
We proceed with standard techniques of renormalized

figld theory[14]. The uItrayioIet dive_rgencgs occurring i_n the :M(d_Z)N/ZGN({/-LXrM_ZWrAr():)};,U/_2T;Uul)-
diagrams can be regularized by dimensional regularization.
We employ the renormalization scheme (3.12

o—p=2Yp, t7=7"17Z7 (3.7  From Egs.(3.11) and(3.12 we drive the scaling relation
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Gn{XW A, (N)};7,U, )
=(d=2E NG (L1x,1 ¢ w A () 1L YUk, ),
(3.13

with the well known critical exponents for percolatipbs]

.1 206,
T=YT 7217 9261€
| ose10 2se 1o
~ 8168202 7203¢(3) |+ O(e) (314
and
ooyt S 589
v=(270) T=5 1 g€t 37004¢
Jomesie e T
130691232 720353 |€ 0. (B.19

Note that{ in Eq. (3.14 stands for the Riemann zeta func-
tion and should not be confused with the Wilson function

defined above. The exponeit is defined by
bi=v(2— ) =v(2— n+ i) (3.16

with i, = '}’wr(U*)- For arbitraryr we find to one-loop order
(for details see Appendix B

€

¢ =1+ ¢ +0(€), (3.17
with
L (1-&)
Cr_if_ldf[(l_i_§)1Ir+(l_§)1/r]r1 (3.18

in conformity with the result by Harri§7]. Calculating ¢,

for generak to higher loop orders appears to be out of scope
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Comparison with Eq(2.26) gives us the scaling behavior of
the average resistance:

(3.2

M, (X, X" )~ |x—=x"|#r"",

IV. FRACTAL DIMENSIONS

In this section we calculate, for r—c, r—0%*, andr
——1". As discussed in Sec. I B, this provides us with the
fractal dimension of the red bonds, the chemical length, and
the backbone, respectively.

A. Red bonds

Considerr — . As argued in Sec. Il B, blobs do not con-
tribute to the total resistance. Now we take direct advantage
of our view of the Feynman diagrams as being resistor net-
works themselves. In analogy to real networks, the resistance
of closed loops vanishes. Only singly connected conducting
propagators contribute to the total resistance of a diagram,
ie.,

singly
R.({sh= 2> s, 4.
I

with the sum being taken only over singly connected con-
ducting propagators. The contribution of a diagram to the
renormalization factoZ,, takes the form

singly

|w(p2):f; ; ds; > sD(p%{s;}).

4.2

Note that a factos; in Eq. (4.2) corresponds to the insertion

of 12 into theith edge of the diagram. We generajgp?)

by inserting3 ¢? in each singly connected conducting propa-

gator. This procedure is carried out up to three loop order,

i.e., every conducting propagator in Appendix A that does

not belong to a closed loop gets an insertion. For details see

Appendix C. The resulting diagrams are displayed in Fig. 1.
Now consider the contributions of the diagrams listed in

Appendix A toZ .. These can be generated by inserting’

The reason is, that conducting diagrams C appear. The totHl conducting as well as in insulating propagators. Again,

resistance of these diagrams cannot be determined by usif

simple rules for adding resistors in series or in pardkele

e obtains the diagrams depicted in Fig. 1 with the same
fore-factors. Consequently,, andZ. are identical at least

Egs. (B1) and (B2)]. Instead, one has to solve the set of up to three-loop order. The same goes for the corresponding
nonlinear cirquit equations which is not feasible in closedWilson functions{.. and «. From the definition ofp, it fol-

form.

Equation(3.13 implies the following scaling behavior of

the two point correlation functio® =G, at criticality,

GLIx—=x'[, WA (N)]=197272G[ 1 |[x—x"|,1 = ¢ "w, A, ()],
(3.19

lows that

2-{%
¢W:ﬁ:1+ 0(64). (43)

Note that this result is in agreement with the rigorous one by
Coniglio [16,17], who proved thatl,.q= 1/v. We rate this as

where we dropped several arguments for notational simplican indication for the validity of Harris’ saddle point ap-
ity. The choicel =|x—x'| ! and a Taylor expansion of the proach.

right hand side of Eq(3.19 lead to
Gl |x=x'[,w, A (X)]

=|x=x'|279" 1+ w, A, (N)|x—x'|#/7+- -],

(3.20

B. Chemical length

In the limitr—0* only the shortest self avoiding path of
conducting propagators contributes to the total resistance of
a diagram. In other words, the total resistance has to be de-
termined such that
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+
+
no

gz oo
AZ?JJ ds; ds; exg sy x1+Szx2]
pJo

48 ) Xexg —iwgh min(s;,S,) ]

:ngpjo ds; ds,exds;x1+Sox2]

Xexd —iwghs;]10(s,—S1), (4.6

where ¢ denotes the step function arfg is an abbreviation

-16 for (2ar) " 9fd%. Diagram B reads

2 o
B= %fpfo ds; ds, exd s;x1+ Sox2]exd —iwehsy ],

(4.7)

and hence,

A—ZBz—ngf ds; ds, exd sy x1+ Sox2]
pJO

XexXg —iwWohs;]6(s1—5S,). (4.8

—-20 -20

Now we take a short detour and present some features of
the field theory of dynamical percolation as studied by one of
us some time ag$l18]. The dynamical functional7 that
leads to the diagrammatic expansion for the calculation of
correlation and response functions is given by

|
i

|
)

GEHAGOOEODOHO
GOPREOBEGIO0G
SOGHGIOGOLOOC

|
]

|
w

|
s

ot

9 g
J= J dix dtyg|y ' +(r—A)+gd- zb}cp-
4.9

FIG. 1. Diagrammatic expansion in the limmit->c. The listed
diagrams including their fore factors can be obtained from the conHere, ¢(x,t) = y[L..dt' e(x,t") andB(x,t) is the response
ducting diagrams shown in Appendix A in two different ways: first, field.
connected conducting propagators and secondly, by inse}tjﬁg
into every conducting and insulating propagator. As a consequence, Gyi(xt) :<¢(X,t)¢(0,t)>j (4.10
the renormalization factoi®, andZ, are identical. The lines stand
for conducting propagators evaluated at zero currents, the solid dot§ the density response function that describes a growing
for 22 insertions. cluster initiated by a germ ak& 0, t=0) which percolates
at the critical point. Near this percolation point the response
function scales as

m%,si;pmh S (4.4 Gya(x,t)=¢ " 2F 0 (x/ &1/ £7), (4.11)

where f is a scaling functioné&=|7|"" is the correlation
is minimal, where the first sum is taken over all self-avoidinglength, andzis the dynamic exponent given to second order
paths of conducting propagators connecting the external led8 € in Ref.[18].

of a diagram. The diagrammatic elements of dynamical percolation are
Forr—07 the conducting propagator reads the propagator
G(p,t)=o(t)exd — y(7+p)t] (4.12
1 _ 1 4 .
T+p?+iwe=P_ A @ x+iweN’ (4.5 ’\ t /

tr——<—Co0 / \
with y=7+p? andr==2_,\ (@, We start with the two one-

loop diagrams A and Bsee Appendix A The diagram A FIG. 2. The propagatoG(p,t) as well as the verticegg and
translates into —ygo(t—t') (from left to righd.



4828 H. K. JANSSEN AND O. STENULL PRE 61

FIG. 3. In the limitr —0" we map the bold one-loop diagram
(see Appendix Aonto the dynamic one shown here. The meaning
of the graphic elements may be inferred from Fig. 2.

. FIG. 4. Dynamic diagrams obtained in the limit-07.
and the verticegyg and — yg6(t—t’). These elements are y g

depicted in Fig. 2. Note that the Fourier transformed propa-
gator reads

a=—(70)? fp | dt atexi vt + oot -t

~ 1
Gp.0)= iw+ y(T+pz) (413 Xexg —iwtq]
and can be identified with Eq4.5) up to a factory ! by =A-2B (4.14
settingywg\ = w. Thus, the renormalization @fj is directly
related to that of the kinetic coefficient One finds that is
related to the chemical length dimension by d,;,. if we identify yt;=s;.
The one loop contribution to the vertex function  Now we turn to the two-loop diagrams. In the same man-
Fl'l(p,w)leélyl(p,w) is visualized in Fig. 3. We find ner as in the one-loop case we obtain

5 5
C—4D—E+2F+4G=g4f f IT ds exp(E S Xi
pJgJoi=1

= {exd —iwoh(S;+S4+85) [{ 8(S;—S1—S5) 8(S3—Ss— S5) — O(S;

—S;—S5)— 0(S3—Ss4—S5) + 1} +exg —iwgh(S;+5S3) [{6(S,+S4—S1—S3)

X 0(S4+S5—53) 0(Sy+S5—51) — O(Sy+S4—S,—S3) — 0(S4+S5—S3) — O(S,+S5—S1) +2}}

Z(YQ)AJpJqfomﬁ dt; exp( il tyxi

[_ | w(t1+t3)]{0(tl—t2—t5) 0(t3+t5_t4) + 6(tl+t3_t2_t4)[ 0(t4_t3_t5)
+0(t3—t,—ts) ]}}

=b+c+d+e. (4.15

{eX[[ - | w(t1+t4+t5)] 0(t1+t5_t2) 6(t4+t5_t3) + eXp

The diagrams b, c, d, and e are depicted in Fig. 4. For the second bold two-loop diagram we find

5 5
H—|—2J+2K+L=g4ff I1 ds exp(E SiXi
pJgJoi=1 i=1

(eXF[ —IWoN(Sy+S2+S3) { 0(S5—S1—S2—S3) 0(S4—S)
, 1
—60(S5—S1—S,—S3) — 0(S,—Sp) + 1} +exd —iwghss] 5{0(514— S;+S3—S5) 0(S;+ S+ S3—S5)

—60(S1+Sy,+S3—S5) — (S +S4+S3—55) + 1}

5 5

_ 4

=(79) fpfq o, L dt; ex;{ 241 tivxi
+exg —iwts]0(ts—t1—ta—t3) (ta—ty)}

—f+g. (4.16

{exq—iw(t1+t2+t3)]9(t2—t4) 0(t1+t2+t3_t5)
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2.0

FIG. 5. Dynamic diagrams obtained in the limit-07.

The diagrams f and g are shown in Fig. 5.

The dynamic diagrams lead to the result for the dynamic
exponentz stated in Ref[18]. Since we identified the two
diagrammatic expansions up to two-loop order, the RRN 057
gives the same result for the chemical length dimension as
the dynamic approach in R€f18],

== | 272815 O )] [€) e 00
mn=2"5" |58 29| "? " 10M3|l5) T
(4.17) 02} {02
Moreover, another consistency check for the saddle point o4
approximation is fulfilled. o 4 -
Obviously,d ., has to approach one fa— 1. This fea- =
ture can be incorporated by a rational approximation yielding -0.6¢ g s 1-06
€ € 2 -0.8 1-0.8
=1+ 1- 3 1+ %—0.03015 . (4.18
. : . 105 i 2 3 4 510
Due to the rich structure of in the percolation problem c=6-d
3 365+140In2-126In3 , FIG. 6. Dependence of the exponedts, and = di,—y/v on
ho=— 14¢~ 5488 € (4.19 dimensionality. Thes expansion(full square$ and the rational ap-

proximation(open squargsare compared to numerical simulations
might be better suited for such a comparison thap. It is (circles. For d,, we take Monte Carlo results by Grassberger. At

_ - _4 _ 43
known exactly thaif, vanishes in one dimension. A rational =2 We insert the exact valug23,24 v=3 and y=75. At d
approximation yields =3 we use Monte Carlo results by Ziff and Stg#5]: »=0.875

+0.008, andy=1.795+0.005.

— —€—0.10182|. (4.20  where the sum is extending over all conducting propagators
14 : L2 :
of the diagram. The contribution of a d|agramZ(,g_1 now

g

din and ¢, are compared to numerical simulations by takes the form

Grassbergelr19] in Fig. 6. The rational approximants agree

reasonably well with the numerical estimatesdat3. At d % cond

=2, the approximant fod,,;, Seems to be in conformity with lw(p?)= f IT ds;> siD(p2{s;}). (4.23
the simulation result. However, the good agreement should 0 '

be taken with caution. It might be accidental, singg(d ] )
=2) hardly agrees with the numerical value. We proceed in the same manner as in Sec. IV A. However,

now 3¢? is inserted into all conducting propagators. For
details of the calculation see Appendix D. Minimal substrac-

. Back i izati
C. Backbone tion leads to the renormalization factor

Now we focus on the limit ——1%. As argued in Sec.
Il B, the resistance of the backbone between two sitaad
x' is given by Zy_1=1+

2 3

7 29

u u 23
12 144 3%

E"‘? +O(U4).

(4.29

R1(6X)=2 pij, (4.2
0y Via the Wilson functions we obtain the exponents
with the sum running over all current carrying bonds of the

underlying cluster. In analogy, the resistance of a Feynman €\? g/e\3 4
diagram is given by Y-1=—2| 7] +11603)~ 75| 7| +O(€)
cond (4-23
Ra({sh=2 s, (4.22

and
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sirable. Atd=3 andd=2 the analytic results look less real-
istic, but they reproduce the shape of the dependence on
dimensionality.

V. CONCLUSIONS AND OUTLOOK

By employing a saddle point approach due to Harris we
calculated the exponent, /v for the critical behavior of the
resistance in a diluted network. We focussed on distinct val-
ues of the nonlinearity, namely, those related to the fractal
dimensions of the red bonds, the chemical path, and the
backbone, respectively.

We provided several consistency checks for the saddle
point approach. The validity of the approach seems to be
beyond question.

For dimensions close to the upper critical dimension six,
our results ford,,,;; and Dg are the most accurate analytical
estimates that we know of. The analytic results agree reason-
ably well with the available numerical simulations. At low
dimensions the agreement becomes less pronounced.

Our interpretation of Feynman diagrams proved to be a
powerful tool. It simplified the renormalization group im-
proved perturbation calculation considerably. The technique
® used here may be applied to other aspects of transport on
-0.20} ! 1-0.20 percolation clusters. For example, it can be employed to cal-

: : ‘ culate the family of noise exponenitg,} for diluted resistor
networks, as treated by Park, Harris, and Lubens} to
one-loop order. Our two-loop calculation yielding

0.00

-0.05¢

1

= 0.0}

-0.15¢

FIG. 7. Dependence of the exponeltg and y_,=Dg—y/v
on dimensionality. Thes expansion(full square$ and the rational € €
approximation(open squargsare compared to numerical results h=1+ 7(1+1)(1+2l) * 123481+1)3(1+21)°
(circles by Grassbergerd=2) and Moukarzel d=3,4). They de-

2

terminedDg by simulations. Atd=2 andd=3 we use the same X{313-672y+1{3327-4032y—8I{4(—389+273y)

values fory and v as in Fig. 6. Atd=4 we takev™'=1.44+0.05

[22] and y=1.44[2]. +1[—2076+1008y+1(—881+336y)|}}
—672A1+1)%(1+21)%¥(1+21)} (5.1

1 172, _ —T74639+2268(3) ,
D=2+ 21€7 9261° +2 4084101 € will be reported in a separate publication in the near future.
In Eq. (5.1) y denotes Euler’s constant afd stands for the
+0(€e%). (4.260  Digamma function.
Note that our result agrees to second ordee imith calcu- ACKNOWLEDGMENTS

lations by Harris and Lubenskj20] based on another ap- .
proach. This is again in favor of the saddle point approxima- We acknowledge support by the S_onderforschungsberelch
tion. 237 “Unordnung und grosse Fluktuationen” of the Deutsche

In Fig. 7 we compare the expansions as well as the Forschungsgemeinschaft.

rational approximants
APPENDIX A: DECOMPOSITION OF DIAGRAMS

Here we list the decomposition of the primary two leg
diagrams(bold) into conducting diagrams composed of con-
ducting (light) and insulatingdashed propagators. The list-
and ing extends up to three-loop order. Note that the conducting

diagrams inherit their combinatorial factor from their bold
26 7166 diagram. For example, the diagrams A and B introduced be-

ST 2 3 low have to be calculated with the same combinatorial fac-
105" 231505° OO tor, namely,3.

(4.28

to numerical simulations by Grassber@2t] and Moukarzel O = —Q— ~2 U
[22]. At d=4 the results agree within the numerical errors. A B

However, a higher accuracy of the numerical estimate is de- (A1)

€
1——=

262
5

LT}

€
1+ 1.2625%) (4.27)

€
1——

DB%1+ 5

1+
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g . ("
A=— ?err(()\)fo ds, dszfq exgd —(s1+5Sy)
X (7+0%)]R(s1,82)- (B4)
Carrying out the momentum integration gives
A= ¢ A X—drl Fd d
- ?Wr r( )(477) 2 0 Sl 82

$1S;
(514529 [si+s5]"

X exp[—(s;+5,) 7] (B5)

Equation(B5) can be simplified by the change of variables
s;—t(1+€) ands,—t(1—¢). Expansion of the result for
small € yields

- G,
A= —gPw A, (X) — 7

11 (1-¢?)
XZJ1d§[<1+§>1’f+<1—§)”]f'

(B6)

Diagram B is particularly simple to compute. We obtain

2
g - G
B:_?WrAr()\)?T 6/2- (B?)

Hence the result for the bold diagram composed\@ind B
AN is

_4 __’/I’ I.\‘_. _ e Y
A12 - G
. U ( ) A—ZB=g2WrAr(>\) :

X —€l2 1_1 1 d [(1_52)
APPENDIX B: ARBITRARY NONLINEARITY T 4 1 5[(1+ E)M-i-(l— g)l/r]r :

In this appendix we sketch the calculation @f for gen- (B8)
eralr to one-loop order. The calculation thrives on the fact o
that the total resistance of the diagrams A and B can be From Eq.(B8) and the renormalization scheme E8.7)
determined by applying simple rules for resistors added ive deduce that
series or in parallel. 2

) . : , . u 1(t (1-89)

Two nonlinear resistors with resistangesandp, add in 7 —1+-11- _f dé¢ - S

series as usual, Y € 4)- 1 [+ +(1-9M]

(B9)

=pi+ps. . . . )
P=P1T P2 (B1) The corresponding Wilson function evaluated at the fixed

e
On the other hand, the total resistance of the two resistors iﬁomt U™ =2€/7 reads

parallel is given by 2¢ € (1 (1- &2
wr:_7+ﬂJ71 g[(1+§)1/r+(1_§)l/r]r'
(B10)

p—llr:le/r+p£l/r_ (BZ)

If we Schwinger parametrize the propagatorsdgyand  From the definition of¢, , Eq. (3.16), we finally obtain the

S,, the total resistance of diagram A reads result stated in Eq€3.17) and(3.18.
S$1S, APPENDIX C: DIAGRAMS FOR THE RED BONDS
R(s1,82)= s~ (B3)
[si+s3]

This appendix gives details on the diagrammatic contribu-
tions to the renormalization off, and 7 in the limit r —o.
For notational simplicity we keep only the part of A propor- As an example we consider the one-loop diagrams A and B.
tional tow,A,(X) and drop all other terms. With EGB3) In Sec. IV A we argued, that only singly connected conduct-
we have ing propagators contribute t4, _. Thus, A gives no such
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contribution at all. The contribution of B can be expressed as The procedure is carried out up to three-loop order. It
results in

Q ' (C1

where the lines stand for conducting propagators evaluated at
zero currents and the solid dot for grp? insertion. The
resulting contribution of A-2B is

-2 Q : (C2 +8

~ Now we turn tor. Z, can be calculated by insertiig?>  These diagrams can be most conveniently evaluated by map-
into conducting and insulating propagators. The contributiorping them onto those calculated in REE5]. The two-loop

w-Cr- e <)
" 25+

(D3)

BSC

of both A and B reads contribution for example can be reexpressed as
2 . C3
Q ) L --(=z)”
2 T2\ 2
The resulting contribution of A2B is again the one stated (D4)
in Eq. (C2).

up to three-loop order. One obtains in both cases the sanf@r 2 from the diagram. This is important at this stage, since
diagrams with the same fore-factors. The result is listed irflifferent diagrams, each inheriting its combinatorial factor

Fig. 1. from its bold diagram, may be mapped onto the same three-
leg diagram. The additional factor on the right-hand side
APPENDIX D: EVALUATION OF DIAGRAMS cancels the combinatorial factdiof the three-leg diagram as
FOR THE BACKBONE well as a vertex—g. Similar identifications can be made for

the three-loop diagrams appearing in H93). After all, the
In this appendix we give some details of the calculation offollowing diagrammatic contributions to the renormalization
the backbone dimension. As described in Sec. IV C, we inof w_; are obtained:
sert ¢? into each conducting propagator. The diagram A for
example has two conducting propagators. Its contribution to
Z,_, can be expressed as

2 {} (D1)

As in Appendix C, the lines stand for conducting propagators
evaluated at zero currents and the solid dot for a
1 p%-insertion. The diagram B contributes via

IS

4
+§ + ) (D5)

where we have dropped an overall facteg 2.

(D2) The e-expansion results for the diagrams in EQ5) can
’ be gathered from Refl15]. However, we did not entirely
rely on the results stated there. We also did the calculations

on our own and found the same results leading to the renor-
and hence the total contribution of-A2B vanishes. malization factor given in Eq4.24).
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