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Diluted networks of nonlinear resistors and fractal dimensions of percolation clusters

H. K. Janssen and O. Stenull
Institut für Theoretische Physik III, Heinrich-Heine-Universita¨t, Universitätsstraße 1, 40225 Du¨sseldorf, Germany

~Received 27 October 1999!

We study random networks of nonlinear resistors, which obey a generalized Ohm’s lawV;I r . Our renor-
malized field theory, which thrives on an interpretation of the involved Feynman diagrams as being resistor
networks themselves, is presented in detail. By considering distinct values of the nonlinearityr, we calculate
several fractal dimensions characterizing percolation clusters. For the dimension associated with the red bonds
we show thatdred51/n at least to orderO(e4), with n being the correlation length exponent, ande562d,
whered denotes the spatial dimension. This result agrees with a rigorous one by Coniglio. Our result for the
chemical distance,dmin522e/62@937/588145/49(ln 229/10 ln 3)#(e/6)21O(e3) verifies a previous calcula-
tion by one of us. For the backbone dimension we findDB521e/212172e2/926112@274639
122680z(3)#e3/40841011O(e4), wherez(3)51.202057̄ , in agreement to second order ine with a two-
loop calculation by Harris and Lubensky.

PACS number~s!: 64.60.Ak, 64.60.Fr, 72.80.Ng, 05.70.Jk
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I. INTRODUCTION

Percolation is a leading paradigm for disorder~for a re-
view see, e.g., Refs.@1–3#!. Though it represents the sim
plest model of a disordered system, it has many applicati
e.g., polymerization, porous and amorphous materials,
films, spreading of epidemics, etc. In particular the transp
properties of percolation clusters have gained a vast am
of interest over the last decades. Random resistor netw
~RRNs! play a major role in the study of transport on perc
lation clusters for several reasons. For example, one
learn about the conductivity of disordered media, wh
might be important for technical applications. One can stu
diffusion on disordered substrates, since the diffusion c
stantD and the conductivityS of the system are related b
the Einstein relation

S5
e2n

KBT
D, ~1.1!

wheree andn denote the charge and the density of the m
bile particles. Nonlinear RRNs, for which the voltage dropV
over an individual resistor depends on some powerr of the
current I flowing through it, can be exploited to derive th
fractal dimension of various substructures of percolat
clusters.

In this paper we present in detail our study of nonline
RRNs by renormalized field theory. A brief account of th
work has been given previously in Ref.@4#. It is based on an
approach by Stephen@5#, its refinements by Harris an
Lubensky@6#, and its generalization to nonlinear resistors
Harris @7#. Our work thrives on the interpretation of the in
volved Feynman diagrams as being resistor networks th
selves@8,4#. This interpretation leads to a substantial simp
fication of the field theoretic calculations, as we demonstr
by calculating the fractal dimensions of the chemical len
and the backbone to two- and three-loop order, respectiv
PRE 611063-651X/2000/61~5!/4821~14!/$15.00
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II. MODEL

Consider ad-dimensional lattice, where bonds betwe
nearest-neighboring sites are randomly occupied with pr
ability p or empty with probability 12p. Each occupied
bond has a finite nonzero conductances whereas unoccupied
bonds have conductance zero. We suppose that the syst
near the percolation threshold, i.e.,p is close to the critical
concentrationpc above which an infinite cluster exists. W
are interested in the resistanceRr(x,x8) between two lattice
sitesx andx8 averaged subject to the condition, thatx andx8
are on the same cluster,

Mr5^x~x,x8!Rr~x,x8!&C /^x~x,x8!&C . ~2.1!

^¯&C denotes the average over all configurations of the
luted lattice andx(x,x8) is an indicator function that take
the value one ifx and x8 are on the same cluster and ze
otherwise. Note that̂x(x,x8)&C is nothing more than the
usual correlation function in percolation theory. At criticali
Mr obeys@9,10#

Mr;ux2x8ufr /n, ~2.2!

where n is the correlation length exponent defined byj
;(p2pc)

2n.

A. Kirchhoff’s laws

Here, we consider a nonlinear RRN as proposed by K
kel and Straley@11#. The bonds between nearest-neighbori
sitesi and j obey a generalized Ohm’s Law,

Vj2Vi5r i , j I i , j uI i , j ur 21 ~2.3!

or, equivalently,

s i , j~Vj2Vi !uVj2Vi us215I i , j , ~2.4!

wheres i , j (r i , j ) is the nonlinear conductance~resistance! of
the bond^ i , j &, I i , j is the current flowing through the bon
from j to i andVi is the potential at sitei. The exponentsr
4821 ©2000 The American Physical Society
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4822 PRE 61H. K. JANSSEN AND O. STENULL
ands are describing the non linearity withr 5s21. The con-
ductance and the resistance are related vias i , j5r i , j

2s .
Suppose a currentI is put into a cluster at sitex and taken

out at sitex8. Those sites connected tox andx8 by mutually
avoiding paths are constituting the backbone betweenx and
x8. The power dissipated on the backbone is by definitio

P5I ~Vx2Vx8!. ~2.5!

Using Ohm’s law, it may be expressed entirely in terms
voltages as

P5Rr~x,x8!21uVx2Vx8u
s11

5(
^ i , j &

s i , j uVi2Vj us115P~$V%!, ~2.6!

where the sum is taken over all nearest neighbor pairs on
cluster and$V% denotes the corresponding set of voltages.
a consequence of the variation principle

]

]Vi
F 1

s11
P~$V%!2(

j
I jVj G50, ~2.7!

one obtains the circuit equations

(̂
j &

s i , j~Vi2Vj !uVi2Vj us2152(̂
j &

I i , j5I i , ~2.8!

whereI i5I (d i ,x2d i ,x8) and the summations extend over t
nearest neighbors ofi.

Alternatively to Eq.~2.6! the power can by rewritten in
terms of the currents as

P5Rr~x,x8!uI ur 115(
^ i , j &

r i , j uI i , j ur 115P~$I %!, ~2.9!

with $I% denoting the set of currents flowing through the
dividual bonds. Obviously the cluster may contain clos
loops as subnetworks. Suppose there are currents$I ( l )% cir-
culating independently around a complete set of indepen
closed loops. Then the power is not only a function ofI but
also of the set of loop currents. The potential drop arou
closed loops is zero. This gives rise to the variation princi

]

]I ~ l ! P~$I ~ l !%,I !50. ~2.10!

Equation~2.10! may be used to eliminate the loop curren
and thus provides us with a method to determine the t
resistance of the backbone via Eq.~2.9!.

B. Connection to cluster properties

Here we provide background on the meaning off r for
some specific values ofr. For r→1, one recovers the linea
RRN. f1 is the usual resistance exponent as studied to o
e2, e.g., in Ref.@8#.

Other values ofr are related to the fractal dimension
substructures of percolation clusters. Considerr→211.
One obtains immediately as a consequence of Eq.~2.9!, that
f
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R21~x,x8!5 lim
r→211

(
^ i , j &

r i , jUI i , j

I U r 11

5(
^ i , j &

r i , j , ~2.11!

with only those bonds carrying nonzero current contribut
to the sum on the right-hand side. Hence

M 21~x,x8!;MB , ~2.12!

whereMB stands for the number of bonds belonging to t
backbone. Thus, the fractal dimension of the backbone
be expressed as

DB5 lim
r→211

f r /n. ~2.13!

Now we turn tor→` and r→01 following the lines of
Blumenfeld and Aharony@12#. On the backbone betwee
two sitesx andx8 one may distinguish between two differe
substructures: blobs formed by multiconnected bonds
singly connected bonds which are referred to as red bo
Both substructures are contributing to the resistance of
backbone

Rr~x,x8!5(
^ i , j &

blob

r i , jUI i , j

I U r 11

1(
^ i , j &

red

r i , j , ~2.14!

where the sums are taken over all bonds belonging to b
and over all red bonds, respectively. Since sites on a blob
multi-connected by definitionI i , j,I and thus

lim
r→`

(
^ i , j &

blob

r i , jUI i , j

I U r 11

50. ~2.15!

In conclusion, the dimension of the red bonds is related tof r
via

dred5 lim
r→`

f r /n. ~2.16!

Consider now the first sitex at some end of a blob. An
entering currentI splits into currentsI i ,x flowing to nearest
neighborsi with

uI i ,xu5s i ,xuVx2Vi us. ~2.17!

In the limit s→` the ratios uI i ,xu/uI j ,xu vanish whenever
s i ,xuVx2Vi us,s j ,xuVx2Vj us. Thus, current flows only
through the resistor with the largests i ,xuVx2Vi us. This ar-
gument may be iterated through the entire blob. One ide
fies either a single self avoiding chain through whichI flows,
with

P5(
^ i , j &

r i , j uI ur 11 ~2.18!

being the power dissipated on the chain, or several of s
chains with identical power. The expression in Eq.~2.18! is
minimal for minimal (^ i , j &r i , j , i.e., the current chooses th
shortest path through the blob and one is led to
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dmin5 lim
r→01

f r /n ~2.19!

for the chemical length exponent.

C. Generating function

Our aim is to determineMr . Hence our task is twofold
we need to solve the set of Kirchhoff’s equations~2.8! and to
perform the average over all configurations of the dilu
lattice. It can be accomplished by employing the repl
technique@5,6#. The network is replicatedD-fold: Vx→VW x

5(Vx
(1) ,...,Vx

(D)). One introduces

clW ~x!5exp~ ilW •VW x!, ~2.20!

wherelW •VW x5(al (a)Vx
(a) andlW Þ0W . One considers the cor

relation function

G~x,x8;lW !5^clW ~x!c2lW ~x8!& rep ~2.21!

given by

G~x,x8;lW !5K Z2DE )
j

)
a51

D

dVj
~a! expF2

1

s11
P~$VW %!

1
iv

2 (
i

VW i
21 ilW •~VW x2VW x8!G L

C

. ~2.22!

Here P($VW %)5(a51
D P($V(a)%)5(a51

D (^ i , j &s i , j uVi
(a)

2Vj
(a)us11 andZ is the normalization

Z5E )
j

dVj expF2
1

s11
P~$V%!1

iv

2 (
i

Vi
2G .

~2.23!

Note that we have introduced an additional power te
( iv/2)( iVW i

2. This is necessary to give the integrals in Eq
~2.22! and ~2.23! a well defined meaning. Without this term
the integrands depend only on voltage differences and
integrals are divergent. Physically the new term correspo
to grounding each lattice site by a capacitor of unit capac
The original situation may be restored by taking the limit
vanishing frequencyv→0.

In contrast to the linear network,P is not quadratic and
hence the integration over the voltages is not Gaussian.
obstacle may be surmounted by employing the saddle p
method @7#. The saddle point equation is identical to th
variation principle stated in Eq.~2.7!. Thus the maximum of
the integrand is determined by the solution of the circ
equations~2.8! and, up to an unimportant multiplicative con
stant which goes to one in the limitD→0,

G~x,x8;lW !5K expS L r~lW !

r 11
Rr~x,x8! D L

C

, ~2.24!

where

L r~lW !5 (
a51

D

~2 il~a!!r 11. ~2.25!
d
a

.
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Consequently,G(x,x8;lW ) may serve as a generating functio
for Mr , which may be obtained by taking the derivative o

G~x,x8;lW !5^x~x,x8!&CS 11
L r~lW !

r 11
Mr~x,x8!1¯ D ,

~2.26!

with respect toL r evaluated atlW 250.
At this point a comment on the nature oflW is appropriate.

One sets

l~a!5 il01j~a!, ~2.27!

with real positivel0 and j (a) and imposes the condition
(a51

D j (a)50. The saddle point approximation in Eq.~2.24!
may be justified by demanding

l0@1. ~2.28!

On the other hand, substitution of Eq.~2.27! into the defini-
tion of L r leads to

L r~lW !5 (
a51

D H l0
r 112 i ~r 11!l0

r j~a!

2
r ~r 11!

2
l0

r 21j~a!21¯J
5Dl0

r 112
r ~r 11!

2
l0

r 21jW21¯ . ~2.29!

Thus one can justify the expansion in Eq.~2.26! by invoking
the conditions

l0
r 11!D21 and l0

r 21jW2!1. ~2.30!

Note that the replica limitD→0 allows for a simultaneous
fulfilment of the conditions~2.28! and ~2.30!. However, we
will not only rely on these conditions onlW . We will provide
several consistency checks for the validity of Harris’ sad
point approach as we go along and reproduce known res

D. Field theoretic Hamiltonian

Since infinite voltage drops between different cluste
may occur, it is not guaranteed thatZ stays finite, i.e., the
limit lim D→0 ZD is not well defined. Moreover,lW 50W has to
be excluded properly. Both problems can be handled by
sorting to a lattice regularization of the integrals in Eq
~2.22! and ~2.23!. One switches to voltage variablesuW

5DukW taking discrete values on aD-dimensional torus, i.e.
kW is chosen to be aD-dimensional integer with2M,k(a)

<M and k(a)5k(a)mod(2M ). In this discrete picture there
are (2M )D21 independent state variables per lattice site a
one can introduce the Potts spins@13#

FuW~x!5~2M !2D (
lW Þ0W

exp~ ilW •uW !clW ~x!5duW ,uW x
2~2M !2D

~2.31!

subject to the condition(uWFuW(x)50.
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Now we revisit Eq.~2.22!. Carrying out the average ove
the diluted lattice configurations provides us with the weig
exp(2Hrep) of the averagê...& rep,

H rep52 lnK expS 2
1

s11
P~$uW %!1

iv

2 (
i

uW i
2D L

C

52(
^ i , j &

lnK expS 2
1

s11
s i , j uu i2u j us11D L

C

2
iv

2 (
i

uW i
2, ~2.32!

where we have introduced the abbreviationuuus11

5(a51
D uu (a)us11. By dropping a constant termNB ln(12p),

with NB being the number of bonds in the undiluted lattic
one obtains

H rep52(
^ i , j &

K~uW i2uW j !2(
i

h~uW i !

52(
^ i , j &

(
uW ,uW 8

K~uW 2uW 8!FuW~ i !FuW 8~ j !

2(
i

(
uW

h~uW !FuW~ i !, ~2.33!

where

K~uW !5 lnH 11
p

12p
expS 2

1

s11
suuus11D J ~2.34!

and

h~uW !5
iv

2
uW 2. ~2.35!

Note thatK(uW ) is an exponentially decreasing function
replica space with a decay rate proportional tos21. For
larges, the HamiltonianH rep describes a translationally in
variant short range interaction of Potts spins in real and r
lica space with an external one site potentialh(uW ). More-
over, the interaction potentialK(uW ) is an analytic function of
(a51

D uu (a)us11. Thus the Fourier transform

K̃~lW !5
1

~2M !D (
uW

exp~2 ilW •uW !K~uW ! ~2.36!

can be Taylor expanded as

K̃~lW !5w02 (
p51

`

wr ,p@2L r~lW !#p, ~2.37!

with w0 andwr ,p;s2p being expansion coefficients.
In the limit of perfect transport,s→`, K(uW ) goes to its

local limit K(uW )5KduW ,0W , with K being a positive constant
The interaction part of the Hamiltonian reduces to
t

,

p-

H rep
int 52K(

^ i , j &
(

uW
FuW~ i !FuW~ j !. ~2.38!

This represents nothing more than the (2M )D states Potts
model which is invariant against all (2M )D! permutations of
the Potts spinsFuW . If s21Þ0, thisS(2M )D symmetry is lost
in favor of the short range interaction.

We proceed with the usual coarse graining step and
place the Potts spinsFuW(x) by order parameter fieldsw(x,uW )
which inherit the constraint(uWw(x,uW )50. We model the
corresponding field theoretic HamiltonianH in the spirit of
Landau as a mesoscopic free energy from local monom
of the order parameter field and its gradients in real a
replica space. The gradient expansion is justified since
interaction is short ranged in both spaces. Purely local te
in replica space have to respect the fullS(2M )D Potts symme-
try. After these remarks we write down the Landa
Ginzburg-Wilson type Hamiltonian

H5E ddx(
uW

H t

2
w~x,uW !22

wr

2
w~x,uW !

3 (
a51

D S 2
]

]u~a!D r1

w~x,uW !1
1

2
@¹w~x,uW !#2

1
g

6
w~x,uW !31

iv

2
uW 2w~x,uW !J . ~2.39!

Here we have neglected all terms that are irrelevant in
renormalization group sense.t and wr are now coarse
grained analogues of the original coefficientsw0 and wr ,1
appearing in Eq.~2.37!. Terms associated withwr ,p are ir-
relevant forp>2 and therefore neglected. Note again thatH
reduces to the usual (2M )D states Potts model Hamiltonia
by settingwr50 as one retrieves purely geometrical perc
lation in the limit of vanishingwr(s→`).

III. RENORMALIZATION GROUP ANALYSES

A. Resistance of Feynman diagrams

The diagrammatic elements contributing to our renorm
ization group improved perturbation calculation are the th
point vertex2g and the propagator

12dlW ,0W

p21t2wrL r~lW !
5

1

p21t2wrL r~lW !
2

dlW ,0W

p21t
. ~3.1!

Note that we have switched to a (p,lW ) representation by
employing Fourier transformation in real and replica spa
Equation~3.1! shows that the principal propagator decom
poses into a propagator carryinglW ’s ~conducting! and one
not carryinglW ’s ~insulating!. This allows for a schematic
decomposition of principal diagrams into sums of diagra
consisting of conducting and insulating propagators~see Ap-
pendix A!. Here a new interpretation of the Feynman d
grams emerges@8#. They may be viewed as resistor networ
themselves with conducting propagators corresponding
conductors and insulating propagators corresponding to o
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bonds. The parameterss appearing in a Schwinger paramet
zation of the conducting propagators

1

p21t2wrL r~lW !
5E

0

`

dsexp$2s@t1p22wrL r~lW !#%,

~3.2!

correspond to resistances and the replica variablesilW to cur-
rents. The replica currents are conserved in each vertex
we may write for each edgei of a diagramlW i5lW i(lW ,$kW %),
wherelW is an external current and$kW % denotes a complete
set of independent loop currents. ThelW -dependent part of a
diagram can be expressed in terms of its powerP:

expS wr(
i

siL r~lW ! D 5exp@wr P~lW ,$kW %!#. ~3.3!

The new interpretation suggests an alternative way
computing the Feynman diagrams. To evaluate sums o
independent loop currents

(
$kW %

exp@wr P~lW ,$kW %!# ~3.4!

we employ the saddle point method under the conditi
discussed at the end of Sec. II C. Note that the saddle p
equation is nothing more than the variation principle sta
in Eq. ~2.10!. Thus solving the saddle point equations
equivalent to determining the total resistanceRr($si%) of a
diagram, and the saddle point evaluation of Eq.~3.4! yields

exp@Rr~$si%!wrL r~lW !#, ~3.5!

where we have omitted once more multiplicative facto
which go to one forD→0. A completion of squares in th
momenta renders the momentum integrations straight
ward. Equally well we can use the saddle point meth
which is exact here since the momentum dependenc
purely quadratic. After an expansion for smallL r(lW ) all dia-
grammatic contributions are of the form

I ~p2,lW 2!5I P~p2!1I W~p2!wrL r~lW !1¯

5E
0

`

)
i

dsi@11Rr~$si%!wiL r~lW !1¯#

3D~p2,$si%!. ~3.6!

D(p2,$si%) is nothing more than the integrand one obta
upon Schwinger parametrization of the corresponding d
gram in the usualf3 theory.

B. Renormalization and scaling

We proceed with standard techniques of renormali
field theory@14#. The ultraviolet divergences occurring in th
diagrams can be regularized by dimensional regularizat
We employ the renormalization scheme

w→ẘ5Z1/2w, t→ t̊5Z21Ztt, ~3.7a!
nd

f
er

s
int
d

s

r-
d
is

s
-

d

n.

wr→ẘr5Z21Zwr
wr , g→g̊5Z23/2Zu

1/2Ge
21/2u1/2me/2,

~3.7b!

wheree562d andm is an inverse length scale. The fact
Ge5(4p)2d/2G(11e/2), with G denoting the gamma func
tion, is introduced for convenience. TheZ factors may be
determined by minimal subtraction, i.e., they are chosen
solely cancel poles ine. Z, Zt , and Zu are the usual Potts
model Z factors. They have been computed to three lo
order by de Alacantara Bonfimet al. @15#. It remains to cal-
culateZwr

.
The unrenormalized theory has to be independent of

length scalem21 introduced by renormalization. In particu
lar, the connectedN point correlation functions must be in
dependent ofm, i.e.,

m
]

]m
G̊N~$x,ẘrL r~lW !%; t̊,g̊!50 ~3.8!

for all N. Equation~3.8! translates via the Wilson functions

b~u!5m
]u

]mU
0

, k~u!5m
] ln t

]m U
0

, ~3.9a!

z r~u!5m
] ln wr

]m U
0

, g ...~u!5m
]

]m
ln Z...U

0

, ~3.9b!

where the bare quantities are kept fix while taking the
rivatives, into the Gell-Mann-Low renormalization grou
equation

Fm ]

]m
1b

]

]u
1tk

]

]t
1wrz r

]

]wr
1

N

2
gG

3GN~$x,wrL r~lW !%;t,u,m!50. ~3.10!

The particular form of the Wilson functions can be extract
from the renormalization scheme and theZ factors.

The renormalization group equation is solved by t
method of characteristics. At the infrared stable fixed po
u* , determined byb(u* )50, the solution reads

GN~$x,wrL r~lW !%;t,u,m!

5 l g* N/2GN~$ lx,l zr* wrL r~lW !%; l k* t,u* ,lm!,

~3.11!

whereg* 5g(u* ), k* 5k(u* ) andz r* 5z r(u* ).
To get a scaling relation for the correlation functions,

dimensional analysis remains to be performed. It yields

GN~$x,wrL r~lW !%;t,u,m!

5m~d22!N/2GN~$mx,m22wrL r~lW !%;m22t,u,1!.

~3.12!

From Eqs.~3.11! and ~3.12! we drive the scaling relation
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GN~$x,wrL r~lW !%;t,u,m!

5 l ~d221h!N/2GN~$ lx,l 2fr /nwrL r~lW !%; l 21/nt,u* ,m!,

~3.13!

with the well known critical exponents for percolation@15#

h5g* 52
1

21
e2

206

9261
e2

1F2
93619

8168202
1

256

7203
z~3!Ge31O~e4! ~3.14!

and

n5~22k* !215
1

2
1

5

84
e1

589

37044
e2

1F 716519

130691232
2

89

7203
z~3!Ge31O~e4!. ~3.15!

Note thatz in Eq. ~3.14! stands for the Riemann zeta fun
tion and should not be confused with the Wilson functi
defined above. The exponentf r is defined by

f r5n~22z r* !5n~22h1c r ! ~3.16!

with c r5gwr
(u* ). For arbitraryr we find to one-loop order

~for details see Appendix B!

f r511
e

14
cr1O~e2!, ~3.17!

with

cr5
1

2 E21

1

dj
~12j2!

@~11j!1/r1~12j!1/r # r , ~3.18!

in conformity with the result by Harris@7#. Calculatingf r
for generalr to higher loop orders appears to be out of sco
The reason is, that conducting diagrams C appear. The
resistance of these diagrams cannot be determined by u
simple rules for adding resistors in series or in parallel@see
Eqs. ~B1! and ~B2!#. Instead, one has to solve the set
nonlinear cirquit equations which is not feasible in clos
form.

Equation~3.13! implies the following scaling behavior o
the two point correlation functionG5G2 at criticality,

G@ ux2x8u,wrL r~lW !#5 l d221hG@ l ux2x8u,l 2fr /nwrL r~lW !#,
~3.19!

where we dropped several arguments for notational simp
ity. The choicel 5ux2x8u21 and a Taylor expansion of th
right hand side of Eq.~3.19! lead to

G@ ux2x8u,wrL r~lW !#

5ux2x8u22d2h@11wrL r~lW !ux2x8ufr /n1¯#.

~3.20!
.
tal
ing

f

c-

Comparison with Eq.~2.26! gives us the scaling behavior o
the average resistance:

Mr~x,x8!;ux2x8ufr /n. ~3.21!

IV. FRACTAL DIMENSIONS

In this section we calculatef r for r→`, r→01, and r
→211. As discussed in Sec. II B, this provides us with t
fractal dimension of the red bonds, the chemical length,
the backbone, respectively.

A. Red bonds

Considerr→`. As argued in Sec. II B, blobs do not con
tribute to the total resistance. Now we take direct advant
of our view of the Feynman diagrams as being resistor n
works themselves. In analogy to real networks, the resista
of closed loops vanishes. Only singly connected conduc
propagators contribute to the total resistance of a diagr
i.e.,

R`~$si%!5 (
i

singly

si , ~4.1!

with the sum being taken only over singly connected co
ducting propagators. The contribution of a diagram to
renormalization factorZw`

takes the form

I W~p2!5E
0

`

)
j

dsj (
i

singly

siD~p2,$sj%!. ~4.2!

Note that a factorsi in Eq. ~4.2! corresponds to the insertio
of 1

2 w2 into thei th edge of the diagram. We generateI W(p2)
by inserting1

2 w2 in each singly connected conducting prop
gator. This procedure is carried out up to three loop ord
i.e., every conducting propagator in Appendix A that do
not belong to a closed loop gets an insertion. For details
Appendix C. The resulting diagrams are displayed in Fig

Now consider the contributions of the diagrams listed
Appendix A toZt . These can be generated by inserting1

2 w2

in conducting as well as in insulating propagators. Aga
one obtains the diagrams depicted in Fig. 1 with the sa
fore-factors. Consequently,Zw`

andZt are identical at leas
up to three-loop order. The same goes for the correspon
Wilson functionsz` andk. From the definition off r it fol-
lows that

f`5
22z *̀

22k*
511O~e4!. ~4.3!

Note that this result is in agreement with the rigorous one
Coniglio @16,17#, who proved thatdred51/n. We rate this as
an indication for the validity of Harris’ saddle point ap
proach.

B. Chemical length

In the limit r→01 only the shortest self avoiding path o
conducting propagators contributes to the total resistanc
a diagram. In other words, the total resistance has to be
termined such that
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(
paths

(
i Ppath

si ~4.4!

is minimal, where the first sum is taken over all self-avoidi
paths of conducting propagators connecting the external
of a diagram.

For r→01 the conducting propagator reads

1

t1p21 iw0(a51
D l~a! 5

1

x1 iw0l
, ~4.5!

with x5t1p2 andl5(a51
D l~a!. We start with the two one-

loop diagrams A and B~see Appendix A!. The diagram A
translates into

FIG. 1. Diagrammatic expansion in the limitr→`. The listed
diagrams including their fore factors can be obtained from the c
ducting diagrams shown in Appendix A in two different ways: fir
connected conducting propagators and secondly, by inserting1

2 w2

into every conducting and insulating propagator. As a conseque
the renormalization factorsZw`

andZt are identical. The lines stan
for conducting propagators evaluated at zero currents, the solid
for 1

2 w2 insertions.
gs

A5
g2

2 E
p
E

0

`

ds1 ds2 exp@s1x11s2x2#

3exp@2 iw0l min~s1 ,s2!#

5g2E
p
E

0

`

ds1 ds2 exp@s1x11s2x2#

3exp@2 iw0ls1#u~s22s1!, ~4.6!

whereu denotes the step function and*p is an abbreviation
for (2p)2d*ddp. Diagram B reads

B5
g2

2 E
p
E

0

`

ds1 ds2 exp@s1x11s2x2#exp@2 iw0ls1#,

~4.7!

and hence,

A22B52g2E
p
E

0

`

ds1 ds2 exp@s1x11s2x2#

3exp@2 iw0ls1#u~s12s2!. ~4.8!

Now we take a short detour and present some feature
the field theory of dynamical percolation as studied by one
us some time ago@18#. The dynamical functionalJ that
leads to the diagrammatic expansion for the calculation
correlation and response functions is given by

J5E ddx dt gw̃Fg21
]

]t
1~t2D!1gf2

g

2
w̃ Gw.

~4.9!

Here,f(x,t)5g*2`
t dt8w(x,t8) and w̃(x,t) is the response

field.

G1,1~x,t !5^w~x,t !w̃~0,t !&J ~4.10!

is the density response function that describes a grow
cluster initiated by a germ at (x50, t50) which percolates
at the critical point. Near this percolation point the respon
function scales as

G1,1~x,t !5j2~d221h! f ~x/j,t/jz!, ~4.11!

where f is a scaling function,j5utu2n is the correlation
length, andz is the dynamic exponent given to second ord
in e in Ref. @18#.

The diagrammatic elements of dynamical percolation
the propagator

G~p,t !5u~ t !exp@2g~t1p2!t# ~4.12!

-

e,

ts

FIG. 2. The propagatorG(p,t) as well as the verticesgg and
2ggu(t2t8) ~from left to right!.
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and the verticesgg and 2ggu(t2t8). These elements ar
depicted in Fig. 2. Note that the Fourier transformed pro
gator reads

G̃~p,v!5
1

iv1g~t1p2!
~4.13!

and can be identified with Eq.~4.5! up to a factorg21 by
settinggw0l5v. Thus, the renormalization ofw0 is directly
related to that of the kinetic coefficientg. One finds thatz is
related to the chemical length dimension byz5dmin .

The one loop contribution to the vertex functio
G1,1(p,v)51/G̃1,1(p,v) is visualized in Fig. 3. We find

FIG. 3. In the limit r→01 we map the bold one-loop diagram
~see Appendix A! onto the dynamic one shown here. The mean
of the graphic elements may be inferred from Fig. 2.
-

a52~gg!2E
p
E

0

`

dt1 dt2 exp@g~ t1x11t2x2!#u~ t12t2!

3exp@2 ivt1#

5A22B ~4.14!

if we identify gt i5si .
Now we turn to the two-loop diagrams. In the same ma

ner as in the one-loop case we obtain

FIG. 4. Dynamic diagrams obtained in the limitr→01.
C24D2E12F14G5g4E
p
E

q
E

0

`

)
i 51

5

dsi expS (
i 51

5

six i D $exp@2 iw0l~s11s41s5!#$u~s22s12s5!u~s32s42s5!2u~s2

2s12s5!2u~s32s42s5!11%1exp@2 iw0l~s11s3!#$u~s21s42s12s3!

3u~s41s52s3!u~s21s52s1!2u~s21s42s12s3!2u~s41s52s3!2u~s21s52s1!12%%

5~gg!4E
p
E

q
E

0

`

)
i 51

5

dti expS (
i 51

5

t igx i D $exp@2 iv~ t11t41t5!#u~ t11t52t2!u~ t41t52t3!1exp

@2 iv~ t11t3!#$u~ t12t22t5!u~ t31t52t4!1u~ t11t32t22t4!@u~ t42t32t5!

1u~ t32t42t5!#%%

5b1c1d1e. ~4.15!

The diagrams b, c, d, and e are depicted in Fig. 4. For the second bold two-loop diagram we find

H2I22J12K1L5g4E
p
E

q
E

0

`

)
i 51

5

dsi expS (
i 51

5

six i D H exp@2 iw0l~s11s21s3!#$u~s52s12s22s3!u~s42s2!

2u~s52s12s22s3!2u~s42s2!11%1exp@2 iw0ls5#
1

2
$u~s11s21s32s5!u~s11s41s32s5!

2u~s11s21s32s5!2u~s11s41s32s5!11%J
5~gg!4E

p
E

q
E

0

`

)
i 51

5

dti expS (
i 51

5

t igx i D $exp@2 iv~ t11t21t3!#u~ t22t4!u~ t11t21t32t5!

1exp@2 ivt5#u~ t52t12t22t3!u~ t22t4!%

5f1g. ~4.16!
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The diagrams f and g are shown in Fig. 5.
The dynamic diagrams lead to the result for the dynam

exponentz stated in Ref.@18#. Since we identified the two
diagrammatic expansions up to two-loop order, the R
gives the same result for the chemical length dimension
the dynamic approach in Ref.@18#,

dmin522
e

6
2F937

588
1

45

49S ln 22
9

10
ln 3D G S e

6D 2

1O~e3!.

~4.17!

Moreover, another consistency check for the saddle p
approximation is fulfilled.

Obviously,dmin has to approach one ford→1. This fea-
ture can be incorporated by a rational approximation yield

dmin'11S 12
e

5D S 11
e

30
20.0301e2D . ~4.18!

Due to the rich structure ofh in the percolation problem

c052
3

14
e2

3651140 ln 22126 ln 3

5488
e2 ~4.19!

might be better suited for such a comparison thandmin . It is
known exactly thatc0 vanishes in one dimension. A ration
approximation yields

c0'S 12
e

5D S 2
3

14
e20.1018e2D . ~4.20!

dmin and c0 are compared to numerical simulations
Grassberger@19# in Fig. 6. The rational approximants agre
reasonably well with the numerical estimates atd53. At d
52, the approximant fordmin seems to be in conformity with
the simulation result. However, the good agreement sho
be taken with caution. It might be accidental, sincec0(d
52) hardly agrees with the numerical value.

C. Backbone

Now we focus on the limitr→211. As argued in Sec
II B, the resistance of the backbone between two sitesx and
x8 is given by

R21~x,x8!5(
^ i , j &

r i , j , ~4.21!

with the sum running over all current carrying bonds of t
underlying cluster. In analogy, the resistance of a Feynm
diagram is given by

R21~$si%!5(
i

cond

si , ~4.22!

FIG. 5. Dynamic diagrams obtained in the limitr→01.
c

s

nt

g

ld

n

where the sum is extending over all conducting propaga
of the diagram. The contribution of a diagram toZw21

now
takes the form

I W~p2!5E
0

`

)
j

dsj (
i

cond

siD~p2,$sj%!. ~4.23!

We proceed in the same manner as in Sec. IV A. Howev
now 1

2 f2 is inserted into all conducting propagators. F
details of the calculation see Appendix D. Minimal substra
tion leads to the renormalization factor

Zw21511
u2

4e
1

u3

e2 F 7

12
2

29

144
e2

2

3
z~3!eG1O~u4!.

~4.24!

Via the Wilson functions we obtain the exponents

c21522S e

7D 2

1F16z~3!2
2075

126 G S e

7D 3

1O~e4!

~4.25!

and

FIG. 6. Dependence of the exponentsdmin andc05dmin2g/n on
dimensionality. Thee expansion~full squares! and the rational ap-
proximation~open squares! are compared to numerical simulation
~circles!. For dmin we take Monte Carlo results by Grassberger.
d52 we insert the exact values@23,24# n5

4
3 and g5

43
18. At d

53 we use Monte Carlo results by Ziff and Stell@25#: n50.875
60.008, andg51.79560.005.
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DB521
1

21
e2

172

9261
e212

274639122680z~3!

4084101
e3

1O~e4!. ~4.26!

Note that our result agrees to second order ine with calcu-
lations by Harris and Lubensky@20# based on another ap
proach. This is again in favor of the saddle point approxim
tion.

In Fig. 7 we compare thee expansions as well as th
rational approximants

c21'2
2e2

49 S 12
e

5D S 111.2625
e

500D ~4.27!

and

DB'11S 12
e

5D S 11
26

105
e1

7166

231525
e220.0170e3D

~4.28!

to numerical simulations by Grassberger@21# and Moukarzel
@22#. At d54 the results agree within the numerical erro
However, a higher accuracy of the numerical estimate is

FIG. 7. Dependence of the exponentsDB and c215DB2g/n
on dimensionality. Thee expansion~full squares! and the rational
approximation~open squares! are compared to numerical resul
~circles! by Grassberger (d52) and Moukarzel (d53,4). They de-
terminedDB by simulations. Atd52 andd53 we use the same
values forg andn as in Fig. 6. Atd54 we taken2151.4460.05
@22# andg51.44 @2#.
-

.
e-

sirable. Atd53 andd52 the analytic results look less rea
istic, but they reproduce the shape of the dependence
dimensionality.

V. CONCLUSIONS AND OUTLOOK

By employing a saddle point approach due to Harris
calculated the exponentf r /n for the critical behavior of the
resistance in a diluted network. We focussed on distinct v
ues of the nonlinearityr, namely, those related to the fract
dimensions of the red bonds, the chemical path, and
backbone, respectively.

We provided several consistency checks for the sad
point approach. The validity of the approach seems to
beyond question.

For dimensions close to the upper critical dimension s
our results fordmin andDB are the most accurate analytic
estimates that we know of. The analytic results agree rea
ably well with the available numerical simulations. At lo
dimensions the agreement becomes less pronounced.

Our interpretation of Feynman diagrams proved to be
powerful tool. It simplified the renormalization group im
proved perturbation calculation considerably. The techniq
used here may be applied to other aspects of transpor
percolation clusters. For example, it can be employed to
culate the family of noise exponents$c l% for diluted resistor
networks, as treated by Park, Harris, and Lubensky@26# to
one-loop order. Our two-loop calculation yielding

c l511
e

7~11 l !~112l !
1

e2

12348~11 l !3~112l !3

3$3132672g1 l $332724032g28l $4~23891273g!

1 l @2207611008g1 l ~28811336g!#%%

2672~11 l !2~112l !2C~112l !% ~5.1!

will be reported in a separate publication in the near futu
In Eq. ~5.1! g denotes Euler’s constant andC stands for the
Digamma function.
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APPENDIX A: DECOMPOSITION OF DIAGRAMS

Here we list the decomposition of the primary two le
diagrams~bold! into conducting diagrams composed of co
ducting~light! and insulating~dashed! propagators. The list-
ing extends up to three-loop order. Note that the conduc
diagrams inherit their combinatorial factor from their bo
diagram. For example, the diagrams A and B introduced
low have to be calculated with the same combinatorial f
tor, namely,1

2.

~A1!
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~A2!

~A3!

~A4!

~A5!
~A6!

~A7!

~A8!

~A9!
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~A10!

~A11!

~A12!

APPENDIX B: ARBITRARY NONLINEARITY

In this appendix we sketch the calculation off r for gen-
eral r to one-loop order. The calculation thrives on the fa
that the total resistance of the diagrams A and B can
determined by applying simple rules for resistors added
series or in parallel.

Two nonlinear resistors with resistancesr1 andr2 add in
series as usual,

r5r11r2 . ~B1!

On the other hand, the total resistance of the two resistor
parallel is given by

r21/r5r1
21/r1r2

21/r . ~B2!

If we Schwinger parametrize the propagators bys1 and
s2 , the total resistance of diagram A reads

R~s1 ,s2!5
s1s2

@s1
s1s2

s# r . ~B3!

For notational simplicity we keep only the part of A propo
tional to wrL r(lW ) and drop all other terms. With Eq.~B3!
we have
t
e
n

in

A52
g2

2
wrL r S ~lW !E

0

`

ds1 ds2E
q

exp@2~s11s2!

3~t1q2!#R~s1 ,s2!. ~B4!

Carrying out the momentum integration gives

A5 2
g2

2
wrL r~lW !

1

~4p!d/2 E
0

`

ds1 ds2

3exp[2~s11s2!t]
1

~s11s2!d/2

s1s2

@s1
s1s2

s# r . ~B5!

Equation~B5! can be simplified by the change of variabl
s1→t(11j) and s2→t(12j). Expansion of the result for
small e yields

A52g2wrL r~lW !
Ge

e
t2e/2

3
1

4 E21

1

dj
~12j2!

@~11j!1/r1~12j!1/r # r . ~B6!

Diagram B is particularly simple to compute. We obtain

B52
g2

2
wrL r~lW !

Ge

e
t2e/2. ~B7!

Hence the result for the bold diagram composed ofA andB
is

A22B5g2wrL r~lW !
Ge

e

3t2e/2H 12
1

4 E21

1

dj
@~12j2!

@~11j!1/r1~12j!1/r # rJ .

~B8!

From Eq.~B8! and the renormalization scheme Eq.~3.7!
we deduce that

Zwr
511

u

e H 12
1

4 E21

1

dj
~12j2!

@~11j!1/r1~12j!1/r # rJ .

~B9!

The corresponding Wilson function evaluated at the fix
point u* 52e/7 reads

c r52
2e

7
1

e

14E21

1

dj
~12j2!

@~11j!1/r1~12j!1/r # r .

~B10!

From the definition off r , Eq. ~3.16!, we finally obtain the
result stated in Eqs.~3.17! and ~3.18!.

APPENDIX C: DIAGRAMS FOR THE RED BONDS

This appendix gives details on the diagrammatic contri
tions to the renormalization ofwr and t in the limit r→`.
As an example we consider the one-loop diagrams A and
In Sec. IV A we argued, that only singly connected condu
ing propagators contribute toZw`

. Thus, A gives no such
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contribution at all. The contribution of B can be expressed

~C1!

where the lines stand for conducting propagators evaluate
zero currents and the solid dot for an1

2 f2 insertion. The
resulting contribution of A22B is

~C2!

Now we turn tot. Zt can be calculated by inserting12 f2

into conducting and insulating propagators. The contribut
of both A and B reads

~C3!

The resulting contribution of A22B is again the one state
in Eq. ~C2!.

We carry out the insertion procedure for both,w` andt,
up to three-loop order. One obtains in both cases the s
diagrams with the same fore-factors. The result is listed
Fig. 1.

APPENDIX D: EVALUATION OF DIAGRAMS
FOR THE BACKBONE

In this appendix we give some details of the calculation
the backbone dimension. As described in Sec. IV C, we
sert 1

2 f2 into each conducting propagator. The diagram A
example has two conducting propagators. Its contribution
Zw21

can be expressed as

~D1!

As in Appendix C, the lines stand for conducting propagat
evaluated at zero currents and the solid dot for
1
2 f2-insertion. The diagram B contributes via

~D2!

and hence the total contribution of A22B vanishes.
s

nts
s

at

n

e
n

f
-

r
to

s
a

The procedure is carried out up to three-loop order
results in

~D3!

These diagrams can be most conveniently evaluated by m
ping them onto those calculated in Ref.@15#. The two-loop
contribution for example can be reexpressed as

~D4!

Note that we have explicitly extracted the combinatorial fa
tor 1

2 from the diagram. This is important at this stage, sin
different diagrams, each inheriting its combinatorial fac
from its bold diagram, may be mapped onto the same th
leg diagram. The additional factor on the right-hand s
cancels the combinatorial factor1

2 of the three-leg diagram a
well as a vertex2g. Similar identifications can be made fo
the three-loop diagrams appearing in Eq.~D3!. After all, the
following diagrammatic contributions to the renormalizatio
of w21 are obtained:

~D5!

where we have dropped an overall factor2g21.
The e-expansion results for the diagrams in Eq.~D5! can

be gathered from Ref.@15#. However, we did not entirely
rely on the results stated there. We also did the calculati
on our own and found the same results leading to the re
malization factor given in Eq.~4.24!.
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